
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
of Ukraine, Dm

E-mail addr
Journal of Sound and Vibration 322 (2009) 476–489

www.elsevier.com/locate/jsvi
Nonlinear modes of parametric vibrations and their applications
to beams dynamics

K.V. Avramova,b,�

aDepartment of Nonstationary Vibrations, Podgorny Institute for Problems of Engineering Mechanical NAS of Ukraine,

Dm. Pogarski St. 2/10, Kharkov 61046, Ukraine
bDepartment of Gas and Fluid Mechanics, National Technical University ‘‘KhPI’’, Frunze St.21, Kharkov 61002, Ukraine

Accepted 15 July 2008

The peer review of this article was organized by the Guest Editor

Available online 29 August 2008
Abstract

An iterative loop combining nonlinear modes and the Rauscher method is suggested for analyzing finite degree-of-

freedom nonlinear mechanical systems with parametric excitation. This method is applied to an analysis of the parametric

vibration of beams.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many methods exist for analyzing parametric vibrations of discrete nonlinear systems. The asymptotic
methods (multiple-scales method, Van der Pol transformations, Melnikov method) are used for such analysis
[1–4]. The parametric vibrations of essentially nonlinear systems can be analyzed by the harmonic balance
method, continuation technique [5–7].

In this paper the method of parametric vibration analysis based on the combination of the Rausher method
and nonlinear modes is suggested. Note this method can easily be used to analyze the parametric vibrations in
the engineering systems with many degrees of freedom.

The Rauscher method is an effective tool for studying forced vibration. This method has been suggested for
the analysis of single degree-of-freedom nonautonomous systems [8]. Let q be the general coordinates of such
an oscillator. At first, the solution of the corresponding autonomous system is obtained. Let q(t) be this
solution. Then this solution is inverted into the form: t ¼ t(q). Using this function, the nonautonomous system
is transformed into the autonomous system and this approximates the nonautonomous dynamical system. The
generalization of the Rauscher method has been suggested in the book [9]. Chebyshev polynomials were used
to obtain the approximate functions t ¼ t(q) in Ref. [10]. The existence of a function t(q) for a wide class of
dynamical systems was demonstrated in Ref. [11]. Rosenberg [11] used the Rauscher method for the
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.07.013

ing author at: Department of Nonstationary Vibrations, Podgorny Institute for Problems of Engineering Mechanical NAS

. Pogarski St. 2/10, Kharkov 61046, Ukraine. Tel.: +380 572 94 55 14; fax: +380 572 94 46 35.

ess: kvavr@kharkov.ua

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.07.013
mailto:kvavr@kharkov.ua


ARTICLE IN PRESS
K.V. Avramov / Journal of Sound and Vibration 322 (2009) 476–489 477
qualitative analysis of a one-degree-of-freedom dynamical system. Manevitch et al. [7] suggested the
combination of the Rauscher method and the NNMs to analyze discrete systems with an arbitrary number of
dof. The forced vibrations close to rectilinear NNMs of a two-degree-of-freedom system were studied by
means of the Rauscher method in Ref. [6]. A nonlinear two-degree-of-freedom system describing the
interaction of the linear subsystem and the snap-through truss, has been investigated by the Rauscher
approach [12].

Note that all the above-mentioned publications considered the Rauscher method jointly with the
Kauderer–Rosenberg nonlinear modes to represent motions in the configuration space. In this paper, the
Rauscher method is combined with the nonlinear modes, these being two-dimensional invariant manifolds.
These normal modes have been suggested by Shaw and Pierre [13] and Shaw et al. [14]. This is the novelty of
the method presented in this paper.

Nonlinear modes are effective tools for solving engineering problems. They have been used for the analysis
of problems of absorption of mechanical vibrations in the papers [15,16]. Nonlinear modes are used to analyze
the nonlinear vibrations of rotating pre-twisted beams [17] and to analyze the dynamics of a shallow arch [18].

This paper is organized as follows. A general method for the analysis of parametric vibration combining the
Rauscher method and nonlinear modes is considered in the second section. The third and the fourth sections
contain the application of this method to beams dynamics.

2. An iterative approach consisting of the Rausher method and nonlinear modes

The nonlinear system performing parametric vibrations is considered in the following form:

€xj þ o2
j xj þ Fj x1; . . . ; xn; _x1; . . . ; _xn

� �
þ
Xn

i¼1

ajixi cosð2OtÞ ¼ 0; j ¼ 1; n
�!

, (1)

where oi are eigenfrequencies of linear system; aji are constant parameters. In this paper the motions of system
(1) close to the following nonlinear modes are considered:

xn ¼ xnðxl ; vlÞ ¼ a
ðnÞ
1 x2l þ a

ðnÞ
2 xlvl þ � � � ,

vn ¼ _xn ¼ vnðxl ; vlÞ ¼ b
ðnÞ
1 x2l þ b

ðnÞ
2 xlvl þ � � � ,

n ¼ 1; . . . ; l � 1; l þ 1; . . . ; n. (2)

Note that such motions can be observed in system (1) if there are no internal and combination resonances.
An iterative loop is constructed for calculating the motions close to the manifold (2). A similar iterative loop

for forced vibrations analysis is considered in the paper [19]. At the first iteration it is assumed that xl 6¼0, nl 6¼0
and xn ¼ nn ¼ 0. In this case one equation is derived:

€xl þ o2
l xl þ

~F l xl ; _xl ; €xl

� �
þ allxl cosð2OtÞ ¼ 0. (3)

The motions of system (3) can be presented in the following form:

xl ¼ A0 þ A1 cosðOtÞ þ B1 sinðOtÞ þ A2 cosð2OtÞ þ B2 sinð2OtÞ. (4)

The harmonic balance method is used to analyze Eq. (3). Then the system of nonlinear algebraic equations
with respect to the parameters (A0, A1, B1, A2, B2, O) is derived. In general, this system has the following form:

FmðA0;A1;B1;A2;B2;OÞ ¼ 0; m ¼ 1; 5
�!

. (5)

The aim of the present analysis is calculation of a frequency response. Therefore, the parameter A2 is set
with appropriate step size and then the system (5) is solved. For every value of A2, system (5) is solved with
respect to (A0, A1, B1, B2, O). Now, it is assumed that these values are calculated and function (4) is
determined.

For future analysis the following notation is used:

z1 ¼ sin Ot; z2 ¼ cos Ot. (6)
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Then the following equations are obtained from Eq. (4):

xl ¼ A0 þ A1z2 þ B1z1 þ A2 z22 � z21
� �

þ 2B2z1z2,

_xl ¼ � A1Oz1 þ B1Oz2 � 4OA2z1z2 þ 2OB2 z22 � z21
� �

. (7)

The solution of Eq. (7) with respect to z1, z2 is presented in the form of a series:

z1 ¼ a0 þ a1xl þ a2 _xl þ a3x
2
l þ a4 _x

2

l þ a5xl
_xl þ � � � ,

z2 ¼ b0 þ b1xl þ b2 _xl þ b3x
2
l þ b4 _x

2

l þ b5xl
_xl þ � � � , (8)

where a0, a1,y,b0, b1,y are unknown coefficients. Eq. (7) is substituted into Eq. (8) and the coefficients of the
same terms xj1

l x
j2
l ; j1+j2 ¼ 2; j1+j2 ¼ 3,y; j1 ¼ 0, 1,y; j2 ¼ 0, 1,y are equated. As a result two systems of

linear algebraic equations are derived. These systems can be presented in the following form:

½M�A ¼ R1,

½M�B ¼ R2, (9)

where RT
1 ¼ ½0; 0; 1; 0; 0; 0�; R

T
2 ¼ ½0; 0; 0; 0; 1; 0�; A

T
¼ ½a0; a1; a2; a3; a4; a5�; BT ¼ ½b0; b1; b2; b3;b4;b5�;

M ¼

0 �A2 �2B2O B2
1 � 2A0A2 A2

1O
2 �B1A1O� 2A0B2O

0 2B2 �4A2O 4A0B2 þ 2A1B1 �2B1O2A1 B2
1O� 4A0A2O� A2

1O

0 B1 �A1O 2A0B1 0 �A0A1O

0 A2 2B2O 2A0A2 þ A2
1 B2

1O
2 B1A1Oþ 2A0B2O

0 A1 B1O 2A0A1 0 A0B1O

1 A0 0 A2
0 0 0

2
6666666664

3
7777777775
.

Solving the two systems of linear algebraic Eq. (9), the truncated series (8) can be calculated. The following
two equations are obtained from these series:

sinðOtÞ ¼ S xl ; _xl

� �
,

cosðOtÞ ¼ C xl ; _xl

� �
. (10)

Relations (10) are substituted into Eq. (1) and as a result of this the pseudo-autonomous dynamical system
is obtained. This system can be presented in the following form:

€xj þ o2
j xj þ Rj x1; . . . ; xn; _x1; . . . ; _xn; €x1; . . . ; €xn

� �
¼ 0; j ¼ 1; n

�!
. (11)

The solutions of the pseudo-autonomous dynamical system (11) are presented in the form of the nonlinear
mode (2). Then, following [4], the functions xnðxl ; vlÞ; vnðxl ; vlÞ are determined from the partial differential
equations

vnðxl ; vlÞ ¼ vl

qxn
qxl

�
qxn
qvl

o2
l xl þ Rl x1; . . . ; xn; v1ðxl ; vlÞ; . . . ; vnðxl ; vlÞ;�o2

1x1; . . . ;�o
2
nxn

� �� �
,

o2
nxnðxl ; vlÞ þ Rn x1; . . . ; xn; v1ðxl ; vlÞ; . . . ; vnðxl ; vlÞ;�o2

1x1; . . . ;�o
2
nxn

� �
¼ �vl

qvn

qxl

þ
qvn

qvl

� o2
l xl þ Rl x1; . . . ; xn; v1ðxl ; vlÞ; . . . ; vnðxl ; vlÞ;�o2

1x1; . . . ;�o
2
nxn

� �� �
. (12)

Eq. (2) is substituted into system of Eqs. (12) and the coefficients of the terms xj1
l v

j2
l ; j1+j2 ¼ 2; j1+j2 ¼ 3;

y; j1 ¼ 0, 1,y; j2 ¼ 0, 1,y are equated. As a result the system of linear algebraic equations with respect to
a
ðnÞ
1 ; a

ðnÞ
2 ; . . . ; b

ðnÞ
1 ; b

ðnÞ
2 ; . . . is derived. Solving this system, functions (2) are calculated.

Now the second iteration is considered. Function (2) is substituted into the lth equation of system (1). As a
result one nonautonomous equation of the second order is obtained. In general, this equation has the
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following form:

€xl þ o2
l xl þ Fl x1ðxl ; vlÞ; . . . ; xnðxl ; vlÞ; v1ðxl ; vlÞ; . . . ; vnðxl ; vlÞ;�o2

1x1ðxl ; vlÞ; . . . ;�o2
nxnðxl ; vlÞ

� �
þ allxl cosð2OtÞ þ

Xn

i¼1
ial

alixiðxl ; vlÞ cosð2OtÞ ¼ 0: (13)

The solution of Eq. (13) is presented in the form of Eq. (4). After this solution construction, Eq. (10) is
determined and the normal mode of pseudo-autonomous dynamical system (11) is derived. These calculations
are carried out according to the algorithm expressed by Eqs. (5)–(12). The second iteration is finished by
means of nonlinear mode determination. If the coefficients a

ðnÞ
1 ; a

ðnÞ
2 ; . . . of two adjacent iterations are close,

then the periodic motions for the particular value of A2 is determined.
The values of A2 are set with some incremental step value for calculating the frequency response of the

periodic motions. For every value of A2, calculations for periodic motions are carried out.
3. Parametric vibrations of beams

The vibration of a beam with a discrete end-mass is considered, as shown in Fig. 1. The vibrations of this
system are described by the following partial differential equation [20]:

EJuðIV Þ þ 0:5EJ u00u0
2

� �00
þ u00 Pt cosð2OtÞ � 0:5M

Z L

0

u0
2

� �00
tt
ds

	 

þ m €u� Nu0ð Þ

0
¼ 0,

N ¼ 0:5m
Z l

s

ds1

Z s1

0

u0
2

� �00
tt
ds2, (14)

where _u ¼ qu=qt; u0 ¼ qu=qs; uðs; tÞ is deflection of the beam; EJ is stiffness of the beam; Pt cos(Ot) is a
longitudinal force; M is the mass attached to the beam; m is the mass per unit length. The term 0:5EJ u00u02

� �00
defines the contribution of the nonlinearity to the beam curvature and the terms 0:5Mu00

R L

0 u02
� �00

tt
ds and (Nu0)0

describe the nonlinear inertia [21].
Dimensionless variables and parameters are considered for further analysis:

w ¼
u

r
; t ¼ t

ffiffiffiffiffiffiffi
EJ

ml4

s
; x ¼

s

l
; m ¼

M

ml
; w ¼

r2

l2
; f ¼

l2Pt

EJ
,

Fig. 1. Mechanical system.
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where r2 ¼ J/A is the radius of gyration of the cross section, and A is the area of the cross section. Then system
(14) has the following form with respect to the dimensionless variables and parameters:

wðIV Þ þ
w
2

w00w0
2

� �00
þ w00 f cosð2ŌtÞ �

mw
2

Z 1

0

w0
2

� �00
tt
dx

	 

þ €w� wðNnw0Þ0 ¼ 0,

Nn ¼ 0:5

Z 1

x
dx1

Z x1

0

w0
2

� �00
tt
dx2. (15)

The vibration of system (15) is defined by an eigenmode expansion for a simply supported beam:

wðx; tÞ ¼ q1ðtÞ sinðpxÞ þ q2ðtÞ sinð2pxÞ.

Applying the Galerkin technique to system (15), a two-degree-of-freedom dynamical system is derived:

€q1 þ p4q1 þ g1q
3
1 þ g2q1q

2
2 þ q1 2g3 _q2

1 þ q1 €q1

� �
þ 2g4 _q2

2 þ q2 €q2

� �
þ g5 q1 €q2 þ q2 €q1 þ 2 _q1 _q2

� �� �
þ q2 2g7 _q2

1 þ q1 €q1

� �
þ 2g8 _q2

2 þ q2 €q2

� �
þ g6 q1 €q2 þ q2 €q1 þ 2 _q1 _q2

� �� �
� q1f 1 cosð2OtÞ ¼ 0,

€q2 þ 16p4q2 þ b1q3
2 þ q2 2b3 _q2

1 þ q1 €q1

� �
þ 2b4 _q2

2 þ q2 €q2

� �
þ b5 q1 €q2 þ q2 €q1 þ 2 _q1 _q2

� �� �
þ q1 2b7 _q2

1 þ q1 €q1

� �
þ 2b8 _q2

2 þ q2 €q2

� �
þ b6 q1 €q2 þ q2 €q1 þ 2 _q1 _q2

� �� �
þ b2q2q

2
1 � 4q2f 1 cosð2OtÞ ¼ 0, (16)

where

g1 ¼
wp6

8
; g2 ¼ wp6; g3 ¼ wp2

p2m

4
�

3

32
þ

p2

12

� 

; g4 ¼ wp2 p2m�

5

16
þ

p2

3

� 

,

g5 ¼ g6 ¼
10

9
wp2; g7 ¼

5

9
wp2; g8 ¼

20

9
wp2; f 1 ¼ p2f ; b1 ¼ 8wp6; b2 ¼ 4wp6,

b3 ¼ 2wp2
p2

6
�

5

32
þ

p2m
2

� 

; b4 ¼ 2wp2

2p2

3
�

3

16
þ 2p2m

� 

; b5 ¼

40

9
wp2,

b6 ¼
10

9
wp2; b7 ¼

5

9
wp2; b8 ¼

20

9
wp2.

Now parametric vibrations of discrete system (16) are considered. It is assumed that the generalized
coordinate q1 shows a considerable vibration amplitude and that q2 displays a correspondingly small
amplitude. The method suggested in the previous section is used to accommodate such motions. At the first
iteration it is assumed that q2 ¼ 0. System (16) takes the following form:

€q1 þ p4q1 þ g1q
3
1 þ 2g3q1 _q2

1 þ q1 €q1

� �
� f 1q1 cosð2OtÞ ¼ 0. (17)

The analysis of oscillator (17) in the asymptotic limit is considered in the Appendix A. Taking into account
the results of this asymptotic analysis, periodic vibrations of system (17) is chosen in the following form:

q1 ¼ A1 cos Otþ B1 sin Ot. (18)

The harmonic balance method is used to determine the parameters A1, B1. As a result, a system of two
nonlinear algebraic equations with respect to A1 and B1 is derived:

A1 �O2 þ p4 þ ð0:75g1 � g3O
2Þ A2

1 þ B2
1

� �
� 0:5f 1

� �
¼ 0,

B1 �O2 þ p4 þ ð0:75g1 � g3O
2Þ A2

1 þ B2
1

� �
þ 0:5f 1

� �
¼ 0. (19)

Two groups of solutions exist in system (19):
(I)
 A1 ¼ 0, B1 6¼0,

(II)
 A1 6¼0, B1 ¼ 0.
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Group I is determined by the value B1:

B1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p4 � 0:5f 1

0:75g1 � g3O
2

s
(20)

and group II is characterized by the value A1:

A1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5f 1 þ O2 � p4

0:75g1 � g3O
2

s
. (21)

Note that it is possible to obtain the frequency response oscillations of system (17) from Eqs. (20) and (21).
In order to obtain the nonlinear mode of system (16), solution (18) is given as

A2
1 þ B2

1

� �
cosðOtÞ ¼ A1q1 þ B1O�1 _q1,

A2
1 þ B2

1

� �
sinðOtÞ ¼ B1q1 � A1O�1 _q1. (22)

From Eq. (22) it can be shown that the following can be derived:

cosð2OtÞ ¼ a1q2
1 þ a2 _q2

1 þ a3q1 _q1, (23)

where

a1 ¼
A2

1 � B2
1

A2
1 þ B2

1

� �2 ; a2 ¼ O�2
B2
1 � A2

1

A2
1 þ B2

1

� �2 ; a3 ¼
4A1B1O�1

A2
1 þ B2

1

� �2 .
Eq. (23) is substituted into Eq. (16) and as a result of this the pseudo-autonomous dynamical system is

derived. The nonlinear mode of this system can be presented in the following form:

q2 ¼ Q2ðq1; v1Þ ¼ a1q2
1 þ a2q1v1 þ a3v

2
1 þ a4q3

1 þ a5q
2
1v1 þ a6q1v21 þ a7v

3
1 þ � � � ,

v2 ¼ V 2ðq1; v1Þ ¼ b1q2
1 þ b2q1v1 þ b3v

2
1 þ b4q3

1 þ b5q
2
1v1 þ b6q1v21 þ b7v

3
1 þ � � � . (24)

Using the nonlinear mode approach of Shaw and Pierre [13] the following two partial differential equations
are obtained:

v2ðq1; v1Þ ¼ v1
qQ2

qq1

þ
qQ2

qv1
�p4q1 � ðg1 � f 1a1Þq

3
1 � g2q1Q

2
2ðq1; v1Þ þ f 1a2q1v21 þ f 1a3q

2
1v1 � y1

� �
,

� 16p4Q2ðq1; v1Þ þ ð4f 1a1 � b2ÞQ2ðq1; v1Þq
2
1 þ 4f 1a2Q2ðq1; v1Þv

2
1 þ 4f 1a3Q2ðq1; v1Þq1v1

� b1Q
3
2 � y2 ¼ v1

qV2

qq1

þ
qV 2

qv1
�p4q1 � ðg1 � f 1a1Þq

3
1 � g2q1Q

2
2ðq1; v1Þ þ f 1a2q1v21 þ f 1a3q

2
1v1 � y1

� �
, (25)

where

y1 ¼ q1 2g3 _q2
1 þ q1 €q1

� �
þ 2g4 _q2

2 þ q2 €q2

� �
þ g5 €q1q2 þ 2 _q1 _q2 þ q1 €q2

� ���
þ q2 g6

�
€q1q2 þ 2 _q1 _q2 þ q1 €q2

� �
þ 2g7 _q2

1 þ q1 €q1

� �
þ 2g8 _q2

2 þ q2 €q2

� ��
,

y2 ¼ q2 2b3 _q2
1 þ q1 €q1

� �
þ 2b4 _q2

2 þ q2 €q2

� �
þ b5 €q1q2 þ 2 _q1 _q2 þ q1 €q2

� ���
þ q1 b6

�
€q1q2 þ 2 _q1 _q2 þ q1 €q2

� �
þ 2b7 _q2

1 þ q1 €q1

� �
þ 2b8 _q2

2 þ q2 €q2

� ��
.

Matching the coefficients of the same terms q
j1
1 v

j2
1 ; j1 ¼ 0; 1; . . . ; j2 ¼ 0; 1; . . ., is performed. As a result of

this a system of linear algebraic equations with respect to (a1, a2,y, b1, b2,y) is derived. This system of linear
algebraic equations is not presented here for conciseness. The solution of this system has the following form:

a1 ¼ a2 ¼ a3 ¼ b1 ¼ b2 ¼ b3 ¼ a5 ¼ a7 ¼ b6 ¼ b4 ¼ 0,

a6 ¼ b7 ¼ �
38b7
105p4

; a4 ¼
22b7
105

; b5 ¼
142

105
b7. (26)

Eq. (26) is substituted into Eq. (24) and the nonlinear mode is obtained.
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Fig. 2. The frequency response of the mechanical system (16).
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Fig. 3. The nonlinear mode of the mechanical system (16).
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The numerical calculations are carried out for the beam, which is considered in the paper [20]. The following
values of parameters are used:

m ¼ 9:3� 10�2 kg=m; M ¼ 0:162 kg; E ¼ 2:013� 1011 N=m2; r ¼ 7:8� 103 kg=m3,

l ¼ 0:56m; EJ ¼ 0:201Nm2. (27)

The quantities of (27) are used within the calculations for the frequency response in Eqs. (20) and (21).
Fig. 2 shows the frequency response and the nonlinear mode is presented in Fig. 3.
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P0 + Ptcos2Ωt

Fig. 4. The beam interacting with the oscillator.
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4. Interaction of the beam with a linear oscillator

In this section, the nonlinear modes are applied for the analysis of the mechanical system consisting of the
beam and an arbitrary one-degree-of-freedom system attached to the beam, as shown in Fig. 4. This oscillator
can represent a vibration absorber attached in order to reduce parametric vibration in the beam. Thus
the interaction of a discrete and a continuous subsystem is considered. The resulting system is defined
as follows:

EJwðIV Þ þ 0:5EJ w00w0
2

� �00
þ w00 P0 þ Pt cosð2OtÞ � 0:5M

Z l

0

w0
2

� �00
tt
ds

	 

þ m €w� ðNw0Þ0 ¼ dðx� 0:5LÞKfq� wð0:5l; tÞg,

M1 €q ¼ �K ½q� wð0:5l; tÞ�,

N ¼ 0:5m
Z l

s

ds1

Z s1

0

ðw0Þ00tt ds2; (28)

where w(s, t) is deflection of the beam; q is a generalized coordinate of the oscillator; M1 is mass of the
oscillator; EJ is bending stiffness; m is the mass per unit length; d(x�0.5l) is the delta function; K is a stiffness
of the spring.

The following dimensionless variables and parameters are used:

wn ¼
w

r
; t ¼ t

ffiffiffiffiffiffiffi
EJ

ml4

s
; x ¼

s

l
; m ¼

M

ml
; f ¼

Ptl
2

EJ
; w ¼

r2

l2
; c ¼

Kl3

EJ
; m1 ¼

M1

ml
; qn ¼

q

r
, (29)

where r is the radius of gyration of the cross section. The nondimensionalised dynamical system of Eq. (28) has
the following form:

wðIV Þ
� þ

w
2

w00�w
02
�

� �00
þ w00� f cosð2OtÞ � 0:5mw

Z 1

0

w0
2
�

� �00
tt
dx

	 

þ €w�

� w N̄w0�
� �0

¼ cdðx� 0:5Þfq� � w�ð0:5; tÞg,

m1 €q� ¼ �c q� � w�ð0:5; tÞ
� �

,

N̄ ¼ 0:5

Z 1

x
dx1

Z x1

0

w0
2
�

� �00
tt
dx2. (30)
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It is assumed that beam vibration occurs in the first mode of the simply supported beam:

wðx; tÞ ¼ yðtÞ sinðpxÞ. (31)

The Galerkin method is applied to the first equation of system (30). As a result the following dynamical
system is derived:

€yþ p4yþ
w
8
p6y3 � yp2 f cosð2OtÞ � 0:25mwp2ðy2Þdd

� �
þ wp2

p2

12
�

3

32

� 

yðy2Þdd � 2cðqn � yÞ ¼ 0,

m1 €qn þ cðqn � yÞ. (32)

System (32) is re-expressed in linear modal coordinates, using the following equations:

NU ¼MUP, (33)

where

N ¼
p4 þ 2c �2c

�2c 2c

" #
; U ¼

1� p2
1n
�2
1 1� p2

2n
�2
1

1 1

" #
,

M ¼
1 0

0 2m1

" #
; P ¼

p2
1 0

0 p2
2

" #
; n21 ¼

c

m1
,

2p2
1;2 ¼ p4 þ 2cþ n21 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4 þ 2cþ n21
� �2

� 4p4n21

q
.

The following change of variables is applied:

x1
x2

" #
¼ U�1

y

qn

" #
. (34)

The dynamical system (32) takes this form in modal space:

€x1 þ p2
1x1 þ zF 1 x1; x2; _x1; _x2; €x1; €x2; t

� �
¼ 0,

€x2 þ p2
2x2 þ zF 1 x1; x2; _x1; _x2; €x1; €x2; t

� �
¼ 0,

F 1 x1; x2; _x1; _x2; €x1; €x2; t
� �

¼ g1P2ðx1; x2Þ þ 2g3P1 x1; x2; _x1; _x2
� �

þ 2g3P1
€x1; €x2; x1; x2
� �

� ðf 11x1 þ f 12x2Þ cosð2OtÞ, (35)

where

f 11 ¼ f 1a1; f 12 ¼ f 1a2; f 1 ¼ p2f ; g1 ¼
w
8
p6; g3 ¼ wp2

mp2

4
þ

p2

12
�

3

32

� 

,

a1 ¼ 1� p2
1n
�2
1 ; a2 ¼ 1� p2

2n
�2
1 ; z ¼

1

a1 � a2
,

P2ðx1; x2Þ ¼ a3
1x

3
1 þ a3

2x
3
2 þ 3a2

1a2x
2
1x2 þ 3a1a

2
2x1x

2
2,

P1 x1; x2; _x1; _x2
� �

¼ a3
1
_x
2

1x1 þ a2
2a1

_x
2

2x1 þ 2a2
1a2x1 _x1 _x2 þ a2

1a2x2 _x
2

1 þ a3
2x2 _x

2

2 þ 2a1a
2
2x2 _x1 _x2.

The method suggested in Section 2 is used to analyze the system expressed in Eq. (35). The motions with
considerable values of x1, _x1 and small values of x2, _x2 are analyzed. Let us consider the iterative loop for the
analysis of periodic motion. For the first iteration it is assumed that x2 ¼ 0. From then on Eq. (35) are
transformed into the following form:

€x1 þ p2
1x1 þ z g1a3

1x
3
1 þ 2g3a3

1
_x
2

1x1 þ x21 €x1
� �

� f 11x1 cosð2OtÞ
h i

¼ 0. (36)
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The solutions of Eq. (36) are given in the form of Eq. (18), and the methodology relating to Eqs. (18)–(21) is
used to solve Eq. (36), for which the following solutions are admissible:
�
 the equilibrium given by A1 ¼ B1 ¼ 0;

�
 periodic motions with amplitudes:

A1 ¼ 0; B1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p2

1 � 0:5f 11

0:75g1 � 0:5g3O
2

s
. (37)
�
 another periodic motion condition with the following amplitudes:

A1 ¼ 0; B1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � p2

1 þ 0:5f 11

0:75g1 � 0:5g3O
2

s
.

From these motions function cos(2Ot) can be obtained using Eq. (23). Thus, the first iteration is finished.
Eq. (23) is substituted into Eq. (35) and from this the following pseudo-autonomous dynamical system is derived:

€xi þ p2
i xi þ riz P2ðx1; x2Þ þ P1 x1; x2; _x1; _x2

� �
þ P1

€x1; €x2; x1; x2
� �

� b1x
2
1
_x1 � b2x1 _x1x2

h i
¼ 0, (38)

where

r1 ¼ 1; r2 ¼ �1; b1 ¼ f 11a3; b2 ¼ f 12a3,

P2ðx1; x2Þ ¼ að1Þ1 x31 þ að1Þ2 x21x2 þ að1Þ3 x32 þ að1Þ4 x1x
2
2,

P1ðx1; x2; _x1; _x2Þ ¼ að2Þ1 _x
2

1x1 þ að2Þ2 _x
2

2x1 þ að2Þ3 _x2 _x1x1 þ að2Þ4 _x
2

1x2 þ að2Þ5 _x
2

2x2 þ að2Þ6 _x2 _x1x2.

The nonlinear modes of Shaw and Pierre [13] are used to study the dynamical system (38):

x2 ¼ x2ðx1; v1Þ ¼ p4x
3
1 þ p5x

2
1v1 þ p6x1v

2
1 þ p7v31 þ � � � ,

v2 ¼ _x2 ¼ v2ðx1; v1Þ ¼ r4x
3
1 þ r5x

2
1v1 þ r6x1v21 þ r7v

3
1 þ � � � (39)

A nonlinear mode of Eq. (39) is represented as a power series, and following on from Refs. [13,17] it is
known that if linear parts of system (38) are defined in modal space then the linear terms in the series of
Eq. (39) are also equal to zero. System (38) only exhibits cubic nonlinearities. Therefore the quadratic terms in
Eq. (39) are also equal to zero.

At this point the cubic terms from expansion (39) are calculated and by applying the nonlinear modes [13]
the following equations are derived:

v2ðx1; v1Þ ¼
qx2ðx1; v1Þ

qx1
v1 þ

qx2ðx1; v1Þ
qv1

_v1,

_v2ðx1; v1Þ ¼
qv2ðx1; v1Þ

qx1
v1 þ

qv2ðx1; v1Þ
qv1

_v1. (40)

Eq. (38) are substituted into Eq. (40) and the coefficients of x31; x21v1; x1v21; v31 are equated. As a result a
system of linear algebraic equations in p4, p5,y is obtained. The solution of this system is the following:

p5 ¼ zb1 1� 3p2
1p
�2
2

� �
D�1,

r6 ¼ 2zb1D
�1,

r4 ¼ p2
1zb1 3p2

1p
�2
2 � 1

� �
D�1,

p7 ¼ � 2p�22 zb1D�1,
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r5 ¼ D�1p�22 z 3 p2
1a
ð3Þ
1 � að1Þ1

� �
p2
2 � 3p2

1

� �
þ 2p2

1p
2
2a
ð2Þ
1

h i
,

r7 ¼ p6 ¼ p�22 D�1z að2Þ1 3p2
1 � p2

2

� �
� 6 p2

1a
ð3Þ
1 � að1Þ1

� �h i
,

p4 ¼ p�22 D�1z p2
1a
ð3Þ
1 � að1Þ1

� �
p2
2 � 7p2

1

� �
þ 2p4

1a
ð2Þ
1

h i
, (41)

where

D ¼ 10p2
1 � 9p4

1p
�2
2 � p2

2. (42)

The next step requires the nonlinear mode of Eq. (39) to be substituted into Eq. (35) in order to generate

€x1 þ p2
1x1 þ z g1a

3
1x

3
1 þ 2g3a

3
1
_x
2

1x1 þ 2g3a3
1x

2
1
€x1 � f 11x1 cosð2OtÞ

n
� f 12 p4x

3
1 þ p5x

2
1v1 þ p6x1v21 þ p7v31

� �
cosð2OtÞ

�
. (43)

Eq. (42) more accurately describes the motions in the nonlinear mode than does Eq. (36) and these two
equations are seen to differ essentially from one another.

The solution of Eq. (42) is presented as Eq. (18). Then the harmonic balance method is applied and
consequently a system of two nonlinear algebraic equations is obtained:

ðp2
1 � O2ÞA1 þ z d5A3

1 þ d6A1B
2
1 � d3A2

1B1 � d4B3
1 � 0:5f 11A1

� �
¼ 0,

ðp2
1 � O2ÞB1 þ z d1A2

1B1 þ d2B3
1 � d3A1B2

1 � d4A3
1 þ 0:5f 11B1

� �
¼ 0, (44)

where

d1 ¼ 0:75g1a
3
1 � g3O

2a3
1 þ 0:5f 12p6O

2,

d2 ¼ 0:75g1a
3
1 � g3O

2a3
1 þ 0:5f 12p4,

d3 ¼ 0:5f 12p5O; d4 ¼ 0:5f 12p7O
3,

d5 ¼ 0:75g1a
3
1 � g3O

2a3
1 � 0:5f 12p4,

d6 ¼ 0:75g1a
3
1 � g3O

2a3
1 � 0:5f 12p6O

2. (45)

The second iteration concludes with the solution of Eq. (43).
5
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0
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Fig. 5. The frequency response.
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Table 1

The results of the calculations of the frequency response

o A1 for the first iteration A1 for the second iteration

4.905707 0.8076918841 0.7184797517

4.90570 1.557934983 1.505888506

4.90568 2.737854823 2.707908819

4.90564 4.199224210 4.180446464

4.90561 5.023894997 5.008755142
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Finally a third iteration is considered, and the solution of Eq. (43) is taken in the form of Eq. (23). Then the
nonlinear mode (39) is calculated and system (42) is analyzed by solving nonlinear algebraic Eq. (43). At that
point the third iteration is concluded and the iteration is complete when solutions of Eq. (43) for two
subsequent iterations are regarded as being close enough.

The calculation of the frequency response is the aim of this analysis. The values of A1 are preset by means of
some chosen iterative step. For every value of A1 an iterative loop is constructed. The values of B1 and O are
determined from this iterative loop.

The results of an example consisting of a beam interacting with an arbitrary linear oscillator are considered.
The parameters of Eq. (27) and further data comprising

f ¼ 1; r ¼ 0:289� 10�3 m; M1 ¼ 0:0521 kg; c ¼ 70,

are used within the calculations. The results are presented in Fig. 5 as frequency response. The dependence of
the vibrations amplitudes A1, B1 on O is shown. The results of the first and the second iterations are presented
in this figure. These results are so close that they cannot be identified in the scale of this figure. The data of the
frequency response calculations are shown additionally in the table, in which for some values of the excitation
frequency O, the results of the first and the second iterations are presented. As shown in Table 1 the results of
the first and the second iterations are very close.
5. Concluding remarks

An iteration in which nonlinear modes and the Rauscher method are combined has been suggested in this
paper. This approach can be used to determine all the nonlinear modes, and the number of these is equal to the
number of degree of freedom of the nonlinear system. A dynamical system without an internal resonance has
been considered here.

The main advantage of the method suggested here is that it does not need a small parameter in the equations
of motion. Moreover, this method has a simple numerical implementation and reduces to the harmonic
balance method for a one degree of freedom, and it also simplifies to a system of linear algebraic equations.

This method has been applied to an investigation of the parametric vibration of a beam and to the analysis
of the interaction of the beam with an arbitrary one-degree-of-freedom oscillator for which calculations
demonstrate that the iteration converges in two cycles. The second iteration contributes significantly to the
solution of the problem of the beam interacting with the linear oscillator, with the first iteration giving the
nonlinear mode emanating from Eq. (36) whereas the second iteration relates to the form of Eq. (42), with
clear differences between the equations. The second iteration does not contribute to this problem of
parametric vibration in a beam. Therefore, this iteration is not needed.
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Appendix A. Asymptotic analysis of system (17)

It is shown that in the asymptotic limit the solutions of Eq. (17) have the form (18). Using the small
parameter e, system (17) can be presented as

€q1 þ p4q1 þ � g1q
3
1 þ 2g3q1 _q2

1 þ q1 €q1

� �
� f 1q1 cosð2OtÞ

� �
¼ 0. (A.1)

The vibrations of system (A.1) are considered in the case of the main parametric resonance

O ¼ p2 þ �s. (A.2)

The vibration of the system given by Eq. (A.1) is defined by

q1 T0;T1; . . .ð Þ ¼ q10 T0;T1; . . .ð Þ þ �q11 T0;T1; . . .ð Þ þ � � � , (A.3)

where T0 ¼ t; T1 ¼ et. Using the multiple-scales method the following equations are obtained:

q2q10

qT2
0

þ p4q10 ¼ 0,

q2q11

qT2
0

þ 2
q2q10

qT0 qT1
þ p4q11 þ g1q

3
10 þ 2g3q10

qq10

qT0

� 
2

þ 2g3q
2
10

q2q10

qT2
0

� q10f 1 cosð2OtÞ ¼ 0. (A.4)

The motions of the first equation of Eq. (A.4) can be shown to be given by

q10 ¼ AðT1Þ expðip2T0Þ þ ĀðT1Þ expð�ip2T0Þ.

Using the change of variables A ¼ 0.5a exp(ic) and equating to zero the secular terms of the second
equation of system (A.4), the following system of modulation equations is derived:

a0 �
f 1a

4p2
sinð2yÞ ¼ 0,

y0 � sþ
a2

p2
3

8
g1 �

p4g3
2

� 

�

f 1

4p2
cosð2yÞ ¼ 0. (A.5)

As follows from Eq. (A.5) three kinds of steady-state solutions exist. The first group satisfies a1 ¼ 0. The
second group of solutions is described by

y2 ¼ 0; a2
2 ¼

1

w1
ð0:25f 1 þ p2sÞ; w1 ¼

3

8
g1 �

p4g3
2

.

The third group of solutions is determined by

y3 ¼
p
2
; a2

3 ¼
1

w1
ðp2s� 0:25f 1Þ.

The vibrations of system (A.1) have the following form:

q1 ¼ a cosðcþ p2T0Þ.

The second group of the solutions has the form

q1 ¼ a cosðOtÞ

and the third group of motions has the following form:

q1 ¼ a sinðOtÞ.

The analysis given in this appendix shows that the vibration defined by Eq. (17) has the form of Eq. (18).
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